0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Evaluation Procedures for Crack Initiation From In-Service Flaws in CANDU Zr-2.5Nb Pressure Tubes With Hydrogen

[+] Author Affiliations
David Cho

Bruce Power, Toronto, ON, Canada

Steven X. Xu, Douglas A. Scarth, Gordon K. Shek

Kinectrics, Inc., Toronto, ON, Canada

Paper No. PVP2016-64009, pp. V01AT01A053; 11 pages
doi:10.1115/PVP2016-64009
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 1A: Codes and Standards
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5035-0
  • Copyright © 2016 by ASME

abstract

Flaws found during in-service inspection of CANDU(1) Zr-2.5Nb pressure tubes include fuel bundle scratches, debris fretting flaws, fuel bundle bearing pad fretting flaws and crevice corrosion flaws. These flaws are volumetric and blunt in nature. Crack initiation from in-service flaws can be caused by the presence of hydrogen in operating pressure tubes and resultant formation of hydrided regions at the flaw tips during reactor heat-up and cool-down cycles. Zr-2.5Nb pressure tubes in the as-manufactured condition contain hydrogen as an impurity element. During operation, the pressure tube absorbs deuterium, which is a hydrogen isotope, from the corrosion reaction of the zirconium with the heavy water coolant. In addition, deuterium ingresses into the pressure tube in the rolled joint region. The level of hydrogen isotope in pressure tubes increases with operating time.

Over the years, Canadian CANDU industry has carried out extensive experimental and analytical programs to develop evaluation procedures for crack initiation from in-service flaws in Zr-2.5Nb pressure tubes. Crack initiation experiments were performed on pressure tube specimens with machined notches to quantify resistance to crack initiation under various simulated flaw geometries and operating conditions such as operating load and hydrogen concentration. Predictive engineering models for crack initiation have been developed based on understandings of crack initiation and experimental data. A set of technical requirements, including engineering procedures and acceptance criteria, for evaluation of crack initiation from in-service flaws in operating pressure tubes has been developed and implemented in the CSA Standard N285.8. A high level review of the development of these flaw evaluation procedures is described in this paper. Operating experience with the application of the developed flaw evaluation procedure is also provided.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In