0

Full Content is available to subscribers

Subscribe/Learn More  >

Steel-Concrete Composite Vessel for Stationary High-Pressure Hydrogen Storage

[+] Author Affiliations
Yanli Wang, Zhili Feng, Yong Chae Lim, Jian Chen

Oak Ridge National Laboratory, Oak Ridge, TN

Fei Ren

Temple University, Philadelphia, PA

Maan Jawad

Global Engineering and Technology, LLC, Camas, WA

Paper No. PVP2016-63371, pp. V01AT01A044; 6 pages
doi:10.1115/PVP2016-63371
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 1A: Codes and Standards
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5035-0
  • Copyright © 2016 by ASME

abstract

A novel Steel Concrete Composite Vessel (SCCV) was designed and engineered for stationary high-pressure gaseous hydrogen storage applications. SCCV comprises four major innovations: (1) flexible modular design for storage stations for scalability to meet different storage pressure and capacity needs, flexibility for cost optimization, and system reliability and safety, (2) composite storage vessel design and construction with an inner steel vessel encased in a pre-stressed and reinforced outer concrete shellshell, (3) layered steel vessel wall and vent holes to address the hydrogen embrittlement (HE) problem by design, and (4) integrated sensor system to monitor the structural integrity and operation status of the storage system. Together, these innovations form an integrated approach to make the SCCV cost competitive and inherently safe for stationary high-pressure hydrogen storage services.

A demonstration SCCV has been designed and fabricated to demonstrate its technical feasibility. Capable of storing approximately 89 kg of gaseous hydrogen at 6250 psi (430 bar), the demonstration vessel was designed to include all major features of SCCV design and fabricated with today’s manufacturing technologies and code/standard requirements. Two crucial tests have been performed on this demonstration vessel. A hydro-test was successfully carried out to 8950 psi per ASME VIII-2 requirements. The cyclic hydrogen pressure test between 2000 psi and 6000 psi is currently being performed to validate its use for high-pressure hydrogen storage. Multiple sensors, such as pressure sensors and strain gages, were incorporated in the demonstration SCCV to collect information to validate the design and operation of SCCV. Key design parameters and test data on its performance are summarized in this paper.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In