0

Full Content is available to subscribers

Subscribe/Learn More  >

Overview of EAF Screening Results on the 900 MWe NPP French Fleet

[+] Author Affiliations
Thomas Métais, Pierre Genette

EDF SEPTEN, Villeurbanne, France

Nicolas Robert, Nicolas Etchegaray

EDF UNIE, Saint Denis, France

Paper No. PVP2016-63125, pp. V01AT01A015; 11 pages
doi:10.1115/PVP2016-63125
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 1A: Codes and Standards
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5035-0
  • Copyright © 2016 by ASME

abstract

In the wake of numerous experimental tests carried out in air and also in a PWR environment, both abroad and in France, an update of the current thermal fatigue codification is underway in France. Proposals are currently being integrated in the RCC-M code [1].

In parallel, it is necessary to evaluate the impact of codification evolution on the RCS components. In the USA, such evaluations have already been implemented for license renewal to operate power plants beyond their initial 40 years of operation. In order to reduce the scope of the calculations to perform, a preliminary screening was carried out on the various areas of the primary system components: this screening is detailed in an EPRI report [2]. The output of this screening process is a list of locations that are most prone to EAF degradation process and it is on these zones only that detailed EAF calculations are carried out.

In France, a similar approach was defined in the perspective of the fourth ten-year visit of the 900 MWe plants (VD4 900 MWe) so as to map out all the locations that are most impacted by EAF and hence concentrate the calculation effort on these specific areas for the VD4 900 MWe.

In that respect, a specific methodology to evaluate the factor to account for environmental effects or Fen [3] based on correlations [4] for hot and cold shocks was established. These correlations use data that is readily accessible in transient description documents and stress reports such as temperature change, heat transfer coefficients, ramp duration and geometry. The need for these correlations is specific to the French context due to a need for a preliminary and yet precise idea of the overall impact of the modifications brought to the RCC-M code in fatigue before the VD4 900 MWe.

This paper presents the results of the screening method that was applied to the whole RCS of the 900 MWe NPP fleet.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In