0

Full Content is available to subscribers

Subscribe/Learn More  >

Stress Intensity Factor of an Elliptical Crack With a Wavy Crack Front

[+] Author Affiliations
Masayuki Arai

Tokyo University of Science, Katsushika, Japan

Paper No. PVP2016-63362, pp. V01AT01A011; 6 pages
doi:10.1115/PVP2016-63362
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 1A: Codes and Standards
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5035-0
  • Copyright © 2016 by ASME

abstract

In this paper, the stress intensity factor KI for the crack front line a − ε(1 + cosmθ), which is slightly perturbed from a complete circular line with a radius of a, is determined. The method used in this study is based upon the perturbation technique developed by Rice for solving the elastic field of a crack whose front slightly deviates from some reference geometry. It is finally shown that the solution for the stress intensity factor matches the results of a three-dimensional finite element analysis.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In