0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study on Spray and Flame Lift-Off Length of Acetone-Butanol-Ethanol and Diesel Blends in a Constant Volume Chamber

[+] Author Affiliations
Saifei Zhang, Wei Wu

Beijing Institute of Technology, Beijing, China

Zhengxin Xu

Hunan University, Hunan, China

Chia-Fon F. Lee

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. ICEF2016-9473, pp. V001T02A017; 10 pages
doi:10.1115/ICEF2016-9473
From:
  • ASME 2016 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2016 Internal Combustion Engine Division Fall Technical Conference
  • Greenville, South Carolina, USA, October 9–12, 2016
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5050-3
  • Copyright © 2016 by ASME

abstract

Acetone-butanol-ethanol mixture (ABE) is being studied as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for butanol during fermentation. The previous experimental study on spray and flame lift-off length for diesel with 20% addition of ABE mixture, shows a shorter and narrower spray and a much longer flame lift-off length compared to those of neat diesel, which leads to considerably less soot emission level of ABE20.

In this study, a detailed mechanism capable of predicting the ignition delay for ABE as well as ABE-diesel blends is implemented to the KIVA-3V program to simulate the spray dynamics and lift-off length inside the constant volume chamber. The presented model is able to capture the trends with regard to ignition delay, combustion duration and peak pressure. The overall predictivity for ABE20 is better than that of D100. Spray penetration and the lift-off length for both fuels are simulated and the numerical definition for lift-off length is discussed. It is found that the threshold temperature to define lift-off length can be uniform under different ambient temperatures, but varies with respect to oxygen concentration. The simulations also agree with the measurements in predicting the lift-off length decreases as temperature and oxygen concentration increases. Finally, the simulation sooting tendency is presented to show that, due to the improved spray and combustion process of ABE-diesel blend, the soot emission level is much less than conventional diesel fuel.

Copyright © 2016 by ASME
Topics: Sprays , Diesel , Ethanol , Flames

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In