0

Full Content is available to subscribers

Subscribe/Learn More  >

First Steps in Modeling Thermal Actuation of Twisted Polymer Actuators Using Virgin Material Properties

[+] Author Affiliations
Michael W. Shafer, Heidi P. Feigenbaum, Daniel Pugh, Matthew Fisher

Northern Arizona University, Flagstaff, AZ

Paper No. SMASIS2016-9292, pp. V002T06A017; 9 pages
doi:10.1115/SMASIS2016-9292
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

Artificial muscle systems have the potential to impact many technologies ranging from advanced prosthesis to miniature robotics. Recently, it has been shown that twisting drawn polymer fibers such as nylon can result in torsional or tensile actuators depending on the final fiber configuration. The actuation phenomenon relies on the anisotropic nature of the fibers moduli and thermal expansion. They have high axial stiffness, low shear stiffness, and expand more radially when heated than axially. If a polymer fiber is twisted but not coiled, these characteristics result in a torsional actuator that will untwist when heated. During the fabrication process, these twisted polymers can be configured helically before annealing. In this configuration, the untwisting that occurs in a straight twisted fiber results in a contraction or extension depending on relative directions of twist and coiling. In these ways, these materials can be used to create both torsional or axial actuators with extremely high specific work capabilities. To date, the focus of research on twisted polymer actuators (TPAs) and twisted-coiled polymer actuators (TCPAs) has been actuator characterization that demonstrates the technologies capabilities. Our work focuses here on applying a 2D analysis of individual layers of the TPAs to predict thermally induced twisting angle and fiber length based on virgin (untwisted) material properties and actuator parameters like fiber length and inserted twist. A multi-axis rheometer with a controlled thermal environmental chamber was used to twist, anneal, and test thermally induced actuation. Experimentally measured angle of untwist and axial contraction after heating are compare the the model. In comparing the experimental results with the two dimensional model, it appears that the difference between the 2D model and experimental results can be explained by the longitudinal stresses that develop inside the material. Future work will aim to include these effects in the model in order to be able to use this model in the design of TPAs.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In