0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrode Fabrication for Scanning Electrochemical Microscopy and Shear Force Imaging

[+] Author Affiliations
Robert Northcutt, Jacob Maddox, Vishnu-Baba Sundaresan

Ohio State University, Columbus, OH

Paper No. SMASIS2016-9155, pp. V002T06A013; 10 pages
doi:10.1115/SMASIS2016-9155
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

The development of novel characterization techniques is critical for understanding the fundamentals of material systems. Bioinspired systems are regularly implemented but poorly defined through quantitative measurement. In an effort to specify the coupling between multiple domains seen in biologically inspired systems, high resolution measurement systems capable of simultaneously measuring various phenomena such as electrical, chemical, mechanical, or optical signals is required. Scanning electrochemical microscopy (SECM) and shear-force (SF) imaging are nanoscale measurement techniques which examine the electrochemical behavior at a liquid-solid or liquid-liquid interface and simultaneously probe morphological features. It is therefore a suitable measurement technique for understanding biological phenomena.

SF imaging is a high resolution technique, allowing for nanoscale measurement of extensional actuation in materials with high signal to noise ratio. The sensing capabilities of SECM-SF techniques are dependent on the characteristics of the micro-scale electrodes (ultramicroelectrodes or UMEs) used to investigate surfaces. Current limitations to this technique are due to the fabrication process which introduces structural damping, reducing the signal produced. Additionally, despite the high cost of materials and processing, contemporary processes only produce a 10% yield. This article demonstrates a UME fabrication process with a 60% yield as well as improved amplitude (250% increase) and sensitivity (210% increase) during SF imaging. This process is expected to improve the signal to noise ratio of SF-based measurement systems. With these improvements, SECM-SF could become a more suitable technique for measuring cell or tissue activity, corrosion of materials, or coupled mechanics of synthetic faradaic materials.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In