Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Transmembrane Potential on the Gating of MscL Channels in Droplet Interface Bilayers

[+] Author Affiliations
Joseph S. Najem, Donald J. Leo

University of Georgia, Athens, GA

Sergei Sukharev

University of Maryland, College Park, MD

Paper No. SMASIS2016-9150, pp. V002T06A012; 7 pages
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME


The ability to functionalize droplet interface bilayers (DIBs) with the MscL channel and its mutants has been demonstrated. In previous work, the V23T gain of function mutant of MscL produced consistent activation when harmonic axial compressions were applied to the aqueous droplets supporting the lipid bilayer, where the channels settle. The deformation of the droplets results, at maximum compression, in an increase in surface area, and thus an increase in tension at the water-lipid-oil interface. This increase in monolayer tension was found to be the product of the relative change in surface area of each of the droplets and the compressibility modulus of the DPhPC monolayer (∼120 mN/m). The tension increase at the water-lipid-oil interface almost doubles to make up the increase in tension in the bilayer interface, resulting in activation of the incorporated MscL channels. However, it was found that the application of a relatively high transmembrane potential (∼100 mV), from an external power source, is a requirement for the activation of the V23T-MscL channels. Here, we investigate and analyze the impact of transmembrane potential on the activity of MscL channels in both a droplet interface bilayer system and E. coli spheroplast via patch-clamp. We demonstrate that the channels became more susceptible to gating upon the application of a negative potential, compared to when a positive potential is applied, proving their sensitivity to voltage polarity.

Copyright © 2016 by ASME
Topics: Drops



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In