0

Full Content is available to subscribers

Subscribe/Learn More  >

Parametric Study of a Fluidic Artificial Muscle Actuated Electrohydraulic System

[+] Author Affiliations
Edward Chapman, Tyler Jenkins, Matthew Bryant

North Carolina State University, Raleigh, NC

Paper No. SMASIS2016-9044, pp. V002T06A003; 7 pages
doi:10.1115/SMASIS2016-9044
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

Fluidic artificial muscles have the potential for a wide range of uses; from injury rehabilitation to high-powered hydraulic systems. Their modeling to date has largely been quasi-static and relied on the operator to adjust pressure so as to control force output and utilization while little work has been done to analyze the kinematics of the driving-systems involved in their operation. This paper utilizes an established electro-hydraulic model to perform a study of the components of a fluidic artificial muscle actuated climbing robot. Its purpose is to determine the effect of the robotic subsystems on function and efficiency for a small-scale system in order to extrapolate more general design and analysis schemes for future use. Its results indicate that important aspects to consider in design of the hydraulic system are system payload, operating pressure, pump selection, and FAM construction.

Copyright © 2016 by ASME
Topics: Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In