0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Dynamic Behaviors of Flexible Beam Actuators Based on Magnetic Polymers

[+] Author Affiliations
Adam Reece, Jeong-Hoi Koo

Miami University, Oxford, OH

Paper No. SMASIS2016-9290, pp. V002T03A031; 5 pages
doi:10.1115/SMASIS2016-9290
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

This study investigates the dynamic properties of Magneto-Rheological Elastomers (MRE) with hard magnetic particles used as bending actuators under an alternating magnetic field. As earlier studies demonstrated that a dispersion of hard magnetic particles in polymeric materials, aligned in a preferred orientation, cause rotational motion in the sample when a magnetic field is applied perpendicularly to the magnetization direction of the particles. They focused on static responses of MREs with hard magnetic particles. The primary goal of this study is to characterize the dynamic behavior of a flexible bending actuator based on MREs under alternating magnetic fields. In this study, samples from a previous study, consisting of barium hexaferrite particles at 30% concentrations by volume, were tested. A C-shaped electromagnet was constructed to apply alternating magnetic fields along the length of the sample. By securing only one end of the sample to the electromagnet, the sample is free to bend similar to a cantilever beam. Using this setup, the tip displacement of the sample was recorded using a precision load cell and a laser displacement sensor under various input magnetic field strengths and frequencies. The results show that increasing the voltage output or the magnetic field strength increases the displacement of the sample. The results also show that, as the frequency of the sinusoidal voltage input increases, the amplitude of the tip displacement of the sample decrease.

Copyright © 2016 by ASME
Topics: Actuators , Polymers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In