0

Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Switch Timing Control Law for Optimal Displacement Reduction via SSDI

[+] Author Affiliations
Christopher R. Kelley, Jeffrey L. Kauffman

University of Central Florida, Orlando, FL

Paper No. SMASIS2016-9259, pp. V002T03A023; 8 pages
doi:10.1115/SMASIS2016-9259
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

In the conventional implementation of synchronized switch damping (SSD), the switches are intended to occur at every displacement extrema. However, recent work reveals that switching at the vibration peaks is only optimal for displacement reduction under resonance excitation. In general, the optimal switch timing is dependent on the excitation frequency along with the electromechanical coupling and modal damping of the structure. This work seeks to develop a control framework that searches through the possible switch times to find the optimal switch time for synchronized switch damping on an inductor (SSDI) under steady state excitation. The control law does not need any knowledge of the system, only requiring the voltage of the piezo actuator to develop a displacement estimate that is minimized by adjusting the switch timing. Furthermore, the controller naturally senses changes in the excitation and adapts the switch timing to best reduce displacement under the new excitation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In