0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Origami Structures With Smooth Folds

[+] Author Affiliations
Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas

Texas A&M University, College Station, TX

Paper No. SMASIS2016-9195, pp. V002T03A018; 10 pages
doi:10.1115/SMASIS2016-9195
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

Origami provides inspiration and solutions to the fabrication and functionality of various structures. Origami design methods in the literature are limited to the idealization of the folds as creases of zeroth-order geometric continuity. This idealization is not proper for origami structures having non-negligible fold thickness or maximum curvature at the folds restricted by material or structural limitations. For these structures, the folds are not accurately represented as creases but instead as bent regions of higher-order geometric continuity. These fold regions of arbitrary order of continuity are denoted in this work as smooth folds. A method for the design of a single planar sheet and its associated pattern of smooth folds that morphs into a given three-dimensional goal shape represented as a polygonal mesh is proposed. The parameterization of the planar sheet and the constraints allowing for a valid smooth fold pattern and matching of the goal shape in a folded configuration are presented. The folding deformation of the determined sheet designs is simulated using a previously derived kinematic model for origami with smooth folds. Various testing examples considering diverse goal shapes are presented. The results demonstrate that each considered sheet design matches its corresponding goal shape in a known folded configuration having fold angles determined from the geometry of the goal mesh. The proposed method can be used for the design of origami structures having folds of arbitrary order of geometric continuity such as origami-inspired active structures.

Copyright © 2016 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In