0

Full Content is available to subscribers

Subscribe/Learn More  >

Operational Space Control of a Lightweight Robotic Arm Actuated by Shape Memory Alloy (SMA) Wires

[+] Author Affiliations
Serket Quintanar-Guzmán, Somasundar Kannan, Miguel A. Olivares-Mendez, Holger Voos

University of Luxembourg, Luxembourg, Luxembourg

Paper No. SMASIS2016-9137, pp. V002T03A012; 8 pages
doi:10.1115/SMASIS2016-9137
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

This paper presents the design and control of a two link lightweight robotic arm using a couple of antagonistic Shape Memory Alloy (SMA) wires as actuators. A nonlinear robust control law for accurate positioning of the end effector of the two-link SMA based robotic arm is developed to handle the hysteresis behavior present in the system. The model presented consists of two subsystems: firstly the SMA wires model and secondly the dynamics of the robotic arm itself. The control objective is to position the robotic arm’s end effector in a given operational plane position. For this regulation problem a sliding mode control law is applied to the hysteretic system. Finally a Lyapunov analysis is applied to the closed-loop system demonstrating the stability of the system under given conditions. The simulation results demonstrate the accurate and fast response of the control law for position regulation. In addition, the stability of the closed-loop system can be corroborated.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In