0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Optimization of a Magneto-Rheological Fluid Brake for Vehicle Applications

[+] Author Affiliations
Hadi Shamieh, Ramin Sedaghati

Concordia University, Montreal, QC, Canada

Paper No. SMASIS2016-9084, pp. V002T03A008; 7 pages
doi:10.1115/SMASIS2016-9084
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5049-7
  • Copyright © 2016 by ASME

abstract

The magnetorheological Brake (MRB) is an electromechanical brake in which smart magnetorheological (MR) fluids have been utilized to generate the required braking torque. The purpose of this study is to design optimize a real-size MRB for automobile applications considering geometrical, material and magnetic circuit parameters. The mathematical equations governing the system’s braking torques are derived. The dynamic range of a disk-type MRB expressing the ratio of generated toque at on and off states has been formulated as a function of the rotational speed, geometrical and material properties, and applied electrical current. The magnetic circuit analysis of the proposed MRB is performed to find the relation between magnetic field intensity and the applied electrical current as a function of the MRB geometrical and material properties. Finally, a multidisciplinary design optimization problem has been formulated to identify the optimal brake geometrical parameters to maximize the dynamic range of the MRB under weight, size and magnetic flux density constraints. The optimization problem has been solved using combined Genetic Algorithm and Sequential Quadratic Programming techniques. The optimal design is then compared with those available in the literature.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In