0

Full Content is available to subscribers

Subscribe/Learn More  >

Realization of Origami-Inspired Smart Structures Using Electroactive Polymer (EAP)

[+] Author Affiliations
Saad Ahmed, Erika Arrojado, Zoubeida Ounaies

Pennsylvania State University, University Park, PA

Paper No. SMASIS2016-9202, pp. V001T01A017; 10 pages
doi:10.1115/SMASIS2016-9202
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME

abstract

Robert Lang has brought functionality to origami, the art of paper folding, by developing an extensive series of “action origami” figures. As the name suggests, these figures can perform actions and produce an output motion with the help of manual actuation, unlike traditional origami. For instance, different figures can bite, row, and fly. The goal of this research study is to adapt a few of these action origami figures put forth by Robert Lang to create ‘active’ action origami; these systems, instead of relying on manual actuation for motion, will rely on electro-mechanical actuation. This electro-mechanical actuation will be achieved through the judicious use of an electroactive polymer known as P (VDF-TrFE-CTFE) terpolymer. The terpolymer’s in-plane motion in response to an electric field is converted into bending using a unimorph configuration. This bending motion is exploited to actuate three so-called “action origami” structures: the flapping butterfly, the catapult, and the barking dog. Based on knowledge of the kinematics of the origami structures, multilayered terpolymer actuator is placed strategically on the origami figures with an aim to maximize the resulting actuation motion. In order to understand the behavior, capabilities, and limitations of the terpolymer as an active material, both qualitative and quantitative data are collected from the actuation of these three different action origami structures as a function of number of terpolymer layers, applied electric field and frequency of the applied field. The goal is to find the suitable shapes and crease patterns of the structures as well as the configurations with the terpolymer film to maximize the actuation. These three structures are tested and results show that PVDF-terpolymer is an effective actuator with ability to deform a substrate to a desired shape in the presence of an electric field: the butterfly was able to flap, the mouth of the dog was able to “bark,” and the catapult was able to launch a small ball of paper. Through experimentation, it was determined what parameters affect actuation and furthermore what values of those parameters will maximize the actuation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In