0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Piezoelectric Material Properties and Non-Uniform Poling in a Flexible Electro-Active Composite Finite Element Model

[+] Author Affiliations
Joseph Calogero, Hassene Ben Atitallah, Nicholas Wyckoff, Zoubeida Ounaies, Mary Frecker

Pennsylvania State University, University Park, PA

Paper No. SMASIS2016-9180, pp. V001T01A015; 13 pages
doi:10.1115/SMASIS2016-9180
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME

abstract

Active Fiber Composites (AFCs) are piezoelectric devices comprised of long cylindrical fibers, typically made of ceramic lead zirconate titanate (PZT), embedded in an epoxy polymer. AFCs use interdigitated electrodes to produce electric field lines parallel to the fibers (33-mode) rather than across the diameter, exploiting the stronger out-of-plane electromechanical coupling. Nonlinear piezoelectric and dielectric terms and non-uniform poling are often neglected in modeling AFCs due to the added complexity, however including the terms improves accuracy for strong electric fields and where the electrode geometry causes non-uniform electric fields. For that reason, a new finite element model of the AFC is developed which includes the effect of nonlinearities in piezoelectric strain constants and electric permittivity due to a non-uniform applied electric field resulting from two sets of interdigitated electrodes. The methods used to apply the nonlinear constitutive equations and poling are described. A comparison of the AFC response with linear and nonlinear material properties, with non-uniform poling, is shown for increasing applied electric fields. The difference in AFC response illustrates the necessity to include Rayleigh Law terms and non-uniform poling in the model.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In