0

Full Content is available to subscribers

Subscribe/Learn More  >

LQR Feedback Control Development for Wind Turbines Featuring a Digital Fluid Power Transmission System

[+] Author Affiliations
Niels H. Pedersen, Per Johansen, Torben O. Andersen

Aalborg University, Aalborg East, Denmark

Paper No. FPNI2016-1537, pp. V001T01A024; 10 pages
doi:10.1115/FPNI2016-1537
From:
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • Florianópolis, SC, Brazil, October 26–28, 2016
  • Conference Sponsors: Fluid Power Net International (FPNI), Federal University of Santa Catarina (UFSC), Brazil
  • ISBN: 978-0-7918-5047-3
  • Copyright © 2016 by ASME

abstract

Research within digital fluid power (DFP) transmissions is receiving an increased attention as an alternative to conventional transmission technologies. The use of DFP displacement machines entails a need for applicable control algorithms. However, the design and analysis of controllers for such digital systems are complicated by its non-smooth behavior. In this paper a control design approach for a digital displacement machine® is proposed and a performance analysis of a wind turbine using a DFP transmission is presented. The performance evaluation is based on a dynamic model of the transmission with a DFP motor, which has been combined with the NREL 5-MW reference wind turbine model. A classical variable speed control strategy for wind speeds below rated is proposed for the turbine, where the pump displacement is fixed and the digital motor displacement is varied for pressure control. The digital motor control strategy consists of a full stroke operation strategy, where a Delta-Sigma pulse density modulator is used to determine the chamber activation sequence. In the LQR-control design approach, the discrete behavior of the motor and Delta-Sigma modulator is described by a discrete linear time invariant model. Using full-field flow wind profiles as input, the design approach and control performance is verified by simulation in the dynamic model of the wind turbine featuring the DFP transmission. Additionally, the performance is compared to that of the conventional NREL reference turbine, transmission and controller.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In