0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Instability of a Pressure Compensated Vane Pump

[+] Author Affiliations
Ryan P. Jenkins, Monika Ivantysynova

Purdue University, Lafayette, IN

Paper No. FPNI2016-1535, pp. V001T01A023; 8 pages
doi:10.1115/FPNI2016-1535
From:
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • Florianópolis, SC, Brazil, October 26–28, 2016
  • Conference Sponsors: Fluid Power Net International (FPNI), Federal University of Santa Catarina (UFSC), Brazil
  • ISBN: 978-0-7918-5047-3
  • Copyright © 2016 by ASME

abstract

Currently, fixed displacement pumps are typically used to provide the oil flow required for actuation of the clutches, cooling, and lubrication of automatic transmissions. This results in significant power losses as excess flow at higher engine speeds is throttled through orifices back to the tank. Therefore, the use of variable displacement pumps to supply the required oil flow can reduce the overall fuel consumption of the vehicle by eliminating this excess flow at high engine speeds. This paper presents the development and experimental validation setup of a model for a pressure compensated pivoting-cam-type variable displacement vane pump (VDVP) that is suitable for these applications. The pump operates at low system pressures (typically ∼5 bar with maximum 20 bar) with significant amounts of entrained air present in the working fluid (typically 3% by volume at the delivery) over a wide range of input speeds (700–6000 rpm). These conditions, along with a combination of a highly dynamic flow demand and dynamically changing pressure compensation setting, result in pump instabilities and loss of controllability. Previously, high leakage flow rates were introduced into the cam displacement control volume in an attempt to stabilize the pump with limited improvements. A high fidelity simulation model of the VDVP displacement chambers and cam displacement control volume pressure development was created in MATLAB/Simulink to accurately predict pump flow rates and cam dynamics in order to investigate these instabilities and methods for increasing the controllability of the VDVP. Additionally, the model provides a platform to assess the system sensitivity to changes in fluid/air mixture ratio, vane spacing, bias spring rate, and pump outlet pressure. A modified pump that was instrumented to measure the pressure gradients within each displacement chamber at the transitions between the suction and delivery ports under realistic operating conditions is presented. The modified pump was also instrumented with a linear variable displacement transducer (LVDT) to directly measure cam position during pump operation on an experimental test bed incorporating actual control valves found in an automatic transmission.

Copyright © 2016 by ASME
Topics: Pressure , Pumps

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In