0

Full Content is available to subscribers

Subscribe/Learn More  >

Motion Control Concepts for the Hydraulic Infinite Linear Actuator

[+] Author Affiliations
Martin Hochwallner, Petter Krus

Linköping University, Linköping, Sweden

Paper No. FPNI2016-1523, pp. V001T01A017; 10 pages
doi:10.1115/FPNI2016-1523
From:
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • Florianópolis, SC, Brazil, October 26–28, 2016
  • Conference Sponsors: Fluid Power Net International (FPNI), Federal University of Santa Catarina (UFSC), Brazil
  • ISBN: 978-0-7918-5047-3
  • Copyright © 2016 by ASME

abstract

This contribution presents the novel Hydraulic Infinite Linear Actuator (HILA). It focuses on the control of motion and is based on simulation and analysis.

The novel actuator consists of two symmetric double acting cylinders with a common piston rod and hydraulically detachable pistons. Alternatingly one cylinder engages and drives the load while the other retracts, the HILA thus works in a kind of rope climbing motion.

The purpose of this contribution is to study the motion control of the HILA and to mimic the behaviour of a conventional cylinder. The HILA has three degrees of freedom which are temporarily coupled compared with one in a conventional cylinder. Further, the HILA with the chosen hydraulic system has two continuous and two digital control inputs. The challenge to be tackled is to combine the short stroke back and forth motions of the cylinders into a continuous smooth motion ofthe whole actuator.

Results from simulations and analyses show that the investigated concepts can keep the jerk within acceptable limits for many applications.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In