Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study of High Pressure Flow Through a Hydraulic Pressure Relief Valve Considering Pressure and Temperature Dependent Viscosity, Bulk Modulus and Density

[+] Author Affiliations
Sven Osterland, Jürgen Weber

Technische Universität Dresden, Dresden, Germany

Paper No. FPNI2016-1515, pp. V001T01A010; 9 pages
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • 9th FPNI Ph.D. Symposium on Fluid Power
  • Florianópolis, SC, Brazil, October 26–28, 2016
  • Conference Sponsors: Fluid Power Net International (FPNI), Federal University of Santa Catarina (UFSC), Brazil
  • ISBN: 978-0-7918-5047-3
  • Copyright © 2016 by ASME


This paper investigates the flow through a hydraulic pressure relief valve at high levels of operating pressure up to 700 bar (10000 Psi).

Following the flow path from the cold high pressure region before the metering edge to the warm low pressure region behind, the mean viscosity decreases by a factor of 16, the mean bulk modulus decreases by a factor of 2 and the mean density decreases by 6 %. Based on this preliminary considerations, a turbulent single phase flow considering pressure and temperature dependent viscosity, bulk modulus and density is modelled and steady state as well as transient calculations are performed.

The results of this study show that a pressure and temperature dependent viscosity reduces the pressure drop and the spool force by 10 % compared to a simulation with constant fluid parameters. Moreover, it is shown that compressible flow modelling has negligible influence on pressure drop and spool force — nevertheless, it is required to describe the temperature correctly. Due to the effect of volumetric work an incompressible model approach predicts the mean temperature rise 20 % too high. Finally, it was found that the temperature on the spool exceeds 400 °C. Afterwards, this fact is experimentally validated obtaining tempering colors in high pressure tests.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In