Full Content is available to subscribers

Subscribe/Learn More  >

Hybrid Ballistic-Diffusive Solution of the Frequency-Dependent Phonon Boltzmann Transport Equation

[+] Author Affiliations
Pareekshith Allu, Sandip Mazumder

Ohio State University, Columbus, OH

Paper No. HT2016-7079, pp. V002T15A012; 10 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME


The phonon Boltzmann Transport Equation (BTE) is difficult to solve on account of the directional and spectral nature of the phonon intensity, which necessitates angular and spectral discretization, and ultimately results in a large number (typically few hundreds) of four-dimensional partial differential equations. In the ballistic (large Knudsen number) regime, the phonon intensity is highly anisotropic, and therefore, angular resolution is desirable. However, in the diffusive (small Knudsen number) regime, the intensity is fairly isotropic, and hence, angular discretization is wasteful. In such scenarios, the method of spherical harmonics may be effectively used to reduce the large number of directional BTEs to a few partial differential equations. Since the Knudsen number is frequency dependent, the decision to preserve or eliminate angular discretization may be made frequency by frequency based on whether the spectral Knudsen number is large or small. In this article, a hybrid method is proposed in which for some frequency intervals (bands), full angular discretization is used, while for others, the first order spherical harmonics (P1) is invoked to reduce the number of directional BTEs. The accuracy and efficiency of the hybrid method is tested by solving several steady state and transient nanoscale heat conduction problems in two and three-dimensional geometries. Silicon is used as the candidate material. It is found that hybridization is effective in significantly improving the efficiency of solution of the BTE — sometimes by a factor of three — without significant penalty on the accuracy.

Copyright © 2016 by ASME
Topics: Phonons



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In