0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer in Non-Newtonian Laminar Impinging Jets

[+] Author Affiliations
Ajay Chatterjee, Drazen Fabris

Santa Clara University, Santa Clara, CA

Paper No. HT2016-7340, pp. V002T15A007; 10 pages
doi:10.1115/HT2016-7340
From:
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME

abstract

Numerical results are presented for laminar impinging flow and heat transfer with a non-Newtonian inelastic fluid in a planar two dimensional geometry. Bifurcation diagrams are computed to characterize flow separation and reattachment in steady flow. For a range of rheological parameters calculations show that the dimensionless wall jet heat transfer rate Q may be correlated as Display FormulaRP1.3 where RP is the reattachment coordinate of the primary vortex scaled with the jet half-width, thus quantifying the extent of enhancement with shear thinning. For Re = 200 the unsteady time periodic flow is computed for both fluids and employed in the heat transfer calculations. The Newtonian flow Nusselt numbers at the stagnation point and in the wall jet region, although periodic, show an oscillation in magnitude less than 10% of the mean and time averages similar to steady flow. For the shear thinning fluid the wall jet Nusselt number displays an oscillation amplitude of about half the mean value, and the Nusselt number profile shows considerably improved uniformity over a length scale extending several nozzle widths into the wall jet region. However, unlike steady flow, heat transfer rates are not significantly increased in the oscillatory flow regime.

Copyright © 2016 by ASME
Topics: Heat transfer , Jets

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In