Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation for Wind Turbine Wake and Effects From Different Atmospheric Boundary Conditions

[+] Author Affiliations
Peng Zhou, Xiuling Wang

Purdue University Calumet, Hammond, IN

Paper No. HT2016-7303, pp. V002T15A006; 8 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME


This research focuses on the computational fluid dynamics simulation of near wind turbine wake. Three dimensional wind turbine model is built based on S809 airfoil data [1]. Three different turbulence models are used and compared. They are Realizable k-ε model, SST k-ω model, and Large Eddy Simulation (LES) model. The simulation results from different turbulence models are compared with the NREL Phase VI experiment data. Different boundary conditions, including neutral and unstable conditions, were adopted in the simulation to analyze their influence on wake flow. Updraft and downdraft are considered in this part. Overall numerical results match well with the experiment data. The discussion also compares wind turbine wake under different atmospheric boundary conditions.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In