Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Magnetic Cooling Device Using Gadolinium Alloy and Permanent Magnets

[+] Author Affiliations
Amanie N. Abdelmessih, Paul W. Bartholomae, Matthew L. Casillas, Rocky E. DeLyon, Joshua F. Flaherty, Bradley D. Goolsby, Moriah M. Langley, Lindsey A. Livoni, Trevor W. Logan, Nicolas J. Perhach, Jonathan J. Replogle, Daniel R. Swann, Garrett M. Williams

California Baptist University, Riverside, CA

Paper No. HT2016-7202, pp. V002T11A008; 10 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME


Traditionally, heat pumps and refrigerators utilize the vapor compression cycle to achieve cooling. These vapor compression cycles use hydrochlorofluorocarbons (R134a) as the cycle’s working fluid. This refrigerant contributes to global warming and is expected to be phased out. Consequently, new refrigerants as well as new refrigeration methods need to be developed.

The research detailed in this article attempts to implement the magnetocaloric effect of gadolinium alloy in a designed apparatus to lower the temperature of air. Gadolinium alloy has a noticeable magnetocaloric effect within a strong magnetic field (5 T). This research is aimed at producing a noticeable temperature change (2–3 °C) in a relatively smaller magnetic field (1 T) produced with permanent magnets. This work tests the feasibility of magnetic cooling by introducing the design of a magnetic cooling apparatus, using Gadolinium alloy (Gd5Si2Ge2). Small pebbles were used as opposed to a solid plate in order to have an increased surface area to enhance the convection heat transfer process. Permanent magnets were used in the apparatus, to decrease the operating cost. The maximum temperature change encountered in the heat exchanger of the apparatus built was 2.3 °C in a 1 T magnetic field.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In