Full Content is available to subscribers

Subscribe/Learn More  >

Flow and Heat Transfer Study of an Impinging Piezoelectric Fan Over a Vertical Surface

[+] Author Affiliations
Shadi Habibi Parsa, Omidreza Ghaffari, Mehmet Arik

Ozyegin University, Istanbul, Turkey

Stephen Solovitz

Washington State University, Vancouver, WA

Paper No. HT2016-7097, pp. V002T11A003; 6 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME


Piezoelectric fans are low-form-factor cooling devices, which have gained recent attention for electronics cooling. These devices feature a vibrating blade, which sheds vortices from its tip during its motion. The performance of a piezoelectric fan is based on its location, orientation, and operating condition. Thus, we investigated the heat transfer and flow field of an impinging flow produced by a piezoelectric fan.

The heat transfer tests are conducted using a vertical, 2.54 cm × 2.54 cm copper heater, which is configured with the piezoelectric fan positioned along its centerline. The fan is operated at its fundamental frequency of 60 Hz, where it achieves maximum heat transfer and fan deflection. There is significant heat transfer degradation with increasing heater-to-fan spacing and off-resonance operating conditions.

To better understand this thermal performance, we require information about the flow field produced by this pulsating flow. Hence, we performed particle image velocimetry (PIV) measurements of the flow field for free and impinging cases with different heater-to-fan spacing. We used instantaneous and time-averaged PIV to depict the response in a region within approximately two times the fan oscillation amplitude. In this region, there was a stagnation flow close to the heater, which would result in significant heat transfer. However, this flow also featured high-magnitude velocity vectors towards the sides of the heater rather than towards its center, which would likely result in non-uniform heat transfer.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In