Full Content is available to subscribers

Subscribe/Learn More  >

Transient Analysis of a Cylindrical Heat Pipe Considering Different Wick Structures

[+] Author Affiliations
Mehdi Famouri, Ahmed Abdulshaheed, GuangHan Huang, Chen Li

University of South Carolina, Columbia, SC

M. Mahdi Abdollahzadeh

University of Porto, Porto, Portugal

Gerardo Carbajal

University of Turabo, Gurabo, PR

Paper No. HT2016-7469, pp. V002T08A023; 9 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME


Heat pipes have been shown to be one of the most efficient passive cooling devices for electronic cooling. Only a handful of studies were capable of solving transient performances of heat pipes based on realistic assumptions. A segregated finite volume base scheme using SIMPLE algorithm is used along with system pressurization and overall mass balance to solve mass transfer at the interface, continuity, momentum and energy equations. The fluid flow and heat transfer are solved throughout the wick and vapor core and no assumptions are made at the locations where evaporation and condensations occur. Water is the working fluid and variable densities are used for both liquid and vapor phases to account for continuity at the interface as well as inside of wick and vapor core. The wick is modeled as a non-homogeneous porous media and the effective thermal conductivities and viscous properties are calculated for each type of structure separately using the available relations from the literature. In this study, an axisymmetric two-dimensional solver for cylindrical heat pipe is developed using FLUENT package with the help of User Defined Functions (UDFs) and User Defined Scalar (UDS). The model is tested for grid and time step independency and the results show the stability and accuracy of the proposed method. The numerical results of the present study were in good agreement with the data from previous numerical and experimental studies available in the literature. Additionally, two different wick structures were studied to determine its effect on the thermal performance of heat pipes.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In