0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Inward Solidification of Nano-Enhanced Phase Change Materials (NePCM) Inside a Spherical Capsule

[+] Author Affiliations
Min-Jie Liu, Zi-Qin Zhu, Li-Wu Fan, Zi-Tao Yu

Zhejiang University, Hangzhou, China

Paper No. HT2016-7317, pp. V002T08A016; 6 pages
doi:10.1115/HT2016-7317
From:
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME

abstract

Nano-enhanced phase change materials (PCM), referred to as NePCM, have been proposed by doping highly thermally-conductive nanofillers into matrix PCM to prepare composites that have enhanced thermal conductivity. The classical problem of inward solidification of PCM inside a spherical capsule, with applications to thermal energy storage, was revisited in the presence of nanofillers. In this work, the model NePCM samples were prepared with 1-tetradecanol (C14H30O) possessing a nominal melting point of 37 °C as the matrix PCM. Graphite nanoplatelets (GNPs) were synthesized and utilized as the nanofillers at loadings up to 1% by weight. The transient phase change and heat transfer during solidification were characterized by means of an indirect method that is based on the knowledge of transient volume shrinkage of the PCM. The experimental results showed that the total solidification time becomes shorter with increasing the loading of GNPs, in accordance to the increased effective thermal conductivity of the NePCM samples.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In