0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Heat Source Geometry on the Transient Heat Transfer During Melting Process of a PCM

[+] Author Affiliations
Mohammad Bashar, Kamran Siddiqui

University of Western Ontario, London, ON, Canada

Paper No. HT2016-7232, pp. V002T08A014; 6 pages
doi:10.1115/HT2016-7232
From:
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5033-6
  • Copyright © 2016 by ASME

abstract

Thermal energy storage (TES) systems using phase change materials (PCMs) are used in various engineering applications. TES is a means by which heat is ‘hold’ for a certain period of time for use at a later time. We report an experimental study which was conducted to investigate the melting process and associated heat transfer in a rectangular chamber with a cylindrical u-shaped heat source imbedded inside the PCM. The results showed that geometry and orientation of the heat source immensely influenced the heat transfer behavior during solid-liquid phase transition. The heat transfer behavior, interface movement and the heat transfer coefficients differed both axially and vertically inside the chamber as well as with the melting rate. The local convective heat transfer coefficient, hlocal in the inner region, enclosed by the U-tube, was observed to increase at a higher rate than the outer region. Stronger convective flow and a lower viscosity owing to higher temperature in the inner region is believed to have caused faster melting in this region. The melting rate was also found comparatively higher until approximately two-third of the PCM volume was melted before the rate declined.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In