0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study and Analysis of Dropwise Condensation Using Quartz Crystal Microbalance

[+] Author Affiliations
Junwei Su, Murat Inalpolat, Tingjian Ge, Hamed Esmaeilzadeh, Hongwei Sun

University of Massachusetts Lowell, Lowell, MA

Paper No. HT2016-1033, pp. V001T24A006; 7 pages
doi:10.1115/HT2016-1033
From:
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME

abstract

This work reports a novel Quartz Crystal Microbalance (QCM) based method to analyze the droplet-micropillar surface interaction quantitatively during dropwise condensation. A combined nanoimprinting lithography and chemical surface treatment approach was utilized to directly fabricate the micropillar based superhydrophobic surface on the QCM substrate. The normalized frequency shift of the QCM device and the microscopic observation of the corresponding nucleation, drop growth, and drop coalescence processes clearly demonstrate the different characteristics of these condensation states. In addition, a synchrosqueezed wavelet spectrum based multi-resolution technique was utilized to analyze the resonant signal from the QCM sensor in both time and frequency domains simultaneously. An integrated discrete system modeling along with a hybrid signal and image processing approach was adopted to identify the response of the micropillars under different stages of dropwise condensation (DWC). The outcome of this signal processing research leads to a fundamental understanding of DWC spanning multiple time and length scales. The proposed study will also contribute to an in-depth understanding of different hydrophobic surfaces and DWC through this advanced signal processing and surface treatment. The developed QCM system provides a valuable tool for the dynamic characterization of different condensation processes.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In