Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of Chevron Plate Heat Exchangers for Thermal Management Applications

[+] Author Affiliations
Harsh Tamakuwala, Ryan Von Ness, Debjyoti Banerjee

Texas A&M University, College Station, TX

Paper No. HT2016-7312, pp. V001T05A010; 7 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME


Plate-fin heat exchangers are widely used in industries especially aerospace, cryogenics, food and chemical process industries where high heat flux surface area per unit volume is of prime importance. These heat exchangers consists of series of corrugated plates (herringbone or chevron), separated by gasket sealing. Chevron angled plates are one of the most commonly used type of geometry. The complex design of chevron plate heat exchanger, induces high turbulence and flow reversals causing high heat transfer through the plates. This paper discusses about the computational fluid dynamics simulations conducted over a simplified geometry of Chevron Plate Heat Exchanger to understand the formulation of vortices at different Reynold’s number for various aspect ratios. A single phase laminar flow with periodic boundary condition is used for analysis of the fluid behavior in a unit pattern of the corrugation geometry. Based on different flow and geometric conditions, varying amounts of swirl-flows are observed and different behavior of shear stress and heat transfer plot along the length of the plate is observed. At higher Reynolds numbers (Re), the re-circulations and mixing by the induced vortices causes significant rise of heat flux, with marginal increase in friction factor.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In