Full Content is available to subscribers

Subscribe/Learn More  >

Local Heat Transfer Coefficients Measurement Under Micro Jet Impinging Using Nitrogen Gas (N2)

[+] Author Affiliations
Jeong-Heon Shin, Yingying Wang, Yoav Peles

University of Central Florida, Orlando, FL

Tomer Rozenfeld, Gennady Ziskind

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Ashwin Vutha

Rensselaer Polytechnic Institute, Troy, NY

Paper No. HT2016-7215, pp. V001T05A003; 8 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME


Experimental and simulation studies were performed to reveal local heat transfer coefficients under jet impinging in micro domain with Nitrogen gas. The experimental device was made of a 500 μm thick Pyrex and 400 μm thick silicon wafers. On the Pyrex wafer, four 100 nm thick resistance temperature detector (RTD) thermistors and a heater were fabricated from titanium. Jet orifices were etched by deep reactive ion etching (DRIE) on a silicon wafer, which was attached to the Pyrex wafer through a vinyl sticker (250 μm thick). A 1.9 mm × 14.8 mm × 250 μm micro channel was formed by laser drilling into the sticker.

Varying flow rates of Nitrogen gas and heat fluxes of the heater, temperatures of the four thermistors were collected and local heat transfer coefficients were inferred enabling to divulge the jet impinging cooling characteristics. Initial simulations were used to complement experiments and to obtain detailed flow patterns of the jet, temperature distribution on the heater area, and fluid temperature distribution.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In