Full Content is available to subscribers

Subscribe/Learn More  >

Liquid Layering and the Enhanced Thermal Conductivity of Ar-Cu Nanofluids: A Molecular Dynamics Study

[+] Author Affiliations
Jithu Paul, A. K. Madhu, U. B. Jayadeep, C. B. Sobhan

NIT, Calicut, Kozhikode, India

Paper No. HT2016-7385, pp. V001T04A009; 6 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME


Nanofluids — colloidal suspensions of nanoparticles in base fluids — are known to possess superior thermal properties compared to the base fluids. Various theoretical models have been suggested to explain the often anomalous enhancement of these properties. Liquid layering around the nanoparticle is one of such reasons. The effect of the particle size on the extent of liquid layering around the nanoparticle has been investigated in the present study. Classical molecular dynamics simulations have been performed in the investigation, considering the case of a copper nanoparticle suspended in liquid argon. The results show a strong dependence of thickness of the liquid layer on the particle size, below a particle diameter of 4nm. To establish the role of liquid layering in the enhancement of thermal conductivity, simulations have been performed at constant volume fraction for different particle sizes using Green Kubo formalism. The thermal conductivity results show 100% enhancement at 3.34% volume fraction for particle size of 2nm. The results establish the dominant role played by liquid layering in the enhanced thermal conductivity of nanofluids at the low particle sizes used. Contrary to the previous findings, the molecular dynamics simulations also predict a strong dependence of the liquid layer thickness on the particle size in the case of small particles.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In