Full Content is available to subscribers

Subscribe/Learn More  >

Two-Step Raman Method for Interface Thermal Resistance and In-Plane Thermal Conductivity Characterization of Graphene Interface Materials

[+] Author Affiliations
Man Li, Yanan Yue

Wuhan University, Wuhan, China

Paper No. HT2016-7362, pp. V001T02A005; 8 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME


The negative influence of substrate on in-plane phonon transport in graphene has been revealed by intensive research, whereas the interaction between phonons couplings across graphene/substrate interface and within graphene is still needed to figure out. In this work, we put forward a two-step Raman method to accomplish interface thermal resistance characterization of graphene/SiO2 and in-plane thermal conductivity measurement of supported graphene by SiO2. In order to calculate the interfacial thermal resistance, the temperature difference between graphene and its substrate was probed using Raman thermometry after the graphene film was uniformly electrically heated. Combing the ITR and the temperature response of graphene to laser heating, the thermal conductivity was computed using the fin heat transfer model. Our results shows that the thermal resistance of free graphene/SiO2 is enormous and the thermal conductivity of the supported graphene is significantly suppressed. The phonons scattering and leakage at the interface are mainly responsible for the reduction of thermal conductivity of graphene on substrate. The morphology change of graphene caused by heating mainly determines the huge interfacial thermal resistance and partly contributes to the suppression of thermal conductivity of graphene. This thermal characterization approach simultaneously realizes the non-contact and non-destructive measurement of interfacial thermal resistance and thermal conductivity of graphene interface materials.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In