0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermophysical Properties of Two-Phase Refrigerant Based Nanofluids in a Refrigeration Cycle

[+] Author Affiliations
Bilgehan Tekin

Aselsan Inc., Ankara, Turkey

Almila G. Yazicioglu

METU, Ankara, Turkey

Paper No. HT2016-7192, pp. V001T02A004; 26 pages
doi:10.1115/HT2016-7192
From:
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME

abstract

Nanofluids are a class of fluids with nanoparticles suspended in a base fluid. The aim for using nanofluids is often to improve the thermophysical properties of the base fluid so as to enhance the energy transfer efficiency. As the technology develops; the size of devices and systems needs to get smaller to fulfill the engineering requirements and/or to be leading among competitors. The use of nanofluids in heat transfer applications seems to be a viable solution to current heat transfer problems, albeit with certain limitations. As an enhancing factor for the thermal conductivity of the base fluid, nanofluids are considered to be use in cooling system applications. For these applications, the base fluid, the refrigerant, exists as a two-phase liquid-vapor mixture in parts of the refrigeration cycle. To analyze, design and optimize the cycle in such applications, the thermophysical properties of the refrigerant based nanofluids for two-phase flow of refrigerant are needed. There are different models present in the literature derived for the thermophysical properties of nanofluids. However, a majority of the existing models for nanofluid thermophysical properties have been proposed for water- and other liquids-based nanofluids, through theoretical, numerical and experimental research. Therefore, the existing models for determination of the nanofluid thermophysical properties are not applicable for refrigerant based nanofluid applications when the results are compared. Thus, in this work, a new model is derived for the thermal conductivity and viscosity of refrigerant based nanofluids, using existing data from both heat transfer and thermophysical property measurement experiments. The effect of the nanoparticles on heat transfer in two phase flow of the refrigerant is considered by applying the two phase heat transfer correlations in the literature to experimental data. As a result, the thermophysical properties of the known states are determined through known heat transfer performance. Even though the model is developed from the analysis of flow in an evaporator and flow in a single tube with evaporating refrigerant, it is aimed to cover the flows in both evaporator and condenser sections in a vapor compression refrigeration cycle to provide the necessary models for thermophysical properties in heat transfer devices which will allow the design of both cycle and evaporator or condenser in terms of sizing and rating problems by performing heat transfer analysis and/or optimization. The model can also be improved by considering the effects of slip mechanisms that lead to slip velocity between the nanoparticle and base fluid.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In