Full Content is available to subscribers

Subscribe/Learn More  >

Improving the Resolution of Steady-State, Infrared-Based Thermal Interface Resistance Measurements Using High-Precision Metrology to Determine In-Situ TIM Thickness

[+] Author Affiliations
Ronald J. Warzoha, Andrew N. Smith, Maurice Harris

United States Naval Academy, Annapolis, MD

Paper No. HT2016-7043, pp. V001T02A001; 8 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9


The performance characteristics of thermal interface materials (TIMs) are quickly outpacing our ability to measure them using steady-state techniques. In fact, scientists have turned to photothermal techniques like Time-domain Thermoreflectance (TDTR) to measure the impedance to heat flow across TIMs, namely due to their relatively low measurement uncertainties. However, such techniques are costly, require significant sample preparation, only measure local thermal impedances and are not yet equipped to measure thermal resistance as a function of pressure. Instead, it is desirable to maximize the resolution of traditional steady-state equipment for these types of measurements. In this work, we develop a more robust and accurate methodology to determine the temperature difference across the junction of a traditional steady-state apparatus using high accuracy measurements of in-situ TIM thickness in tandem with infrared thermography. This methodology eliminates a significant fraction of the uncertainty associated with the measurement of thermal interface resistance. Importantly, the use of this method improves the accuracy of the measurement device by an order of magnitude at interfacial thermal resistance values on the order of 1·10−6m2·K/W when compared to state-of-the-art, thermal probe-based measurement systems.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In