Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Double-Pipe Heat Storage Unit

[+] Author Affiliations
A. Rozenfeld, Y. Kozak, T. Rozenfeld, G. Ziskind

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Paper No. HT2016-7394, pp. V001T01A007; 5 pages
  • ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5032-9
  • Copyright © 2016 by ASME


This research is an experimental investigation of a double-pipe heat storage unit. The inner pipe of the unit, through which a heat-transfer fluid (HTF) is supplied, is made of aluminum and has an outer helix-like fin. The annular space between the pipes is filled with a phase change material (PCM). Actually, this research presents a novel design of the heat storage unit, which, unlike traditional designs with e.g. radial (circumferential) or longitudinal fins, has a single fin which does not divide the shell volume into separated cells. Moreover, this research focuses on close-contact melting (CCM), a process which is characterized by detachment of the solid bulk from the unit envelope and its sinking towards the hot fin surface. In previous investigations, performed in our laboratory, this effect has been achieved in units with above-mentioned traditional fin configurations. It was demonstrated that CCM reduces the overall melting time, i.e. the rate of unit charging, significantly as compared with commonly encountered melting in which the fins serve just to enlarge the heat transfer area. The experimental system employed in this study includes a vertically-oriented double-pipe heat storage unit and thermostatic baths capable of providing hot or cold HTF. The unit has a transparent Perspex shell which makes visualization possible. The entire unit may be placed in a heated water tank with transparent walls. In the latter case, close-contact melting is achieved by detaching the solid phase from the envelope and thus allowing its gravity-induced motion. Regular melting is compared to CCM and advantages of the latter are demonstrated. Also demonstrated are the advantages of the novel fin, including in solidification. Possible mathematical and numerical modeling of the melting processes is discussed.

Copyright © 2016 by ASME
Topics: Heat storage , Pipes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In