0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Vertical Penetration of Steel Catenary Riser Near the Touch Down Zone

[+] Author Affiliations
Sujan Dutta, Bipul Hawlader

Memorial University, St. John’s, NL, Canada

Ryan Phillips

C-CORE, St. John’s, NL, Canada

Mike Paulin

INTECSEA Canada, St. John’s, NL, Canada

Paper No. IPC2016-64608, pp. V002T08A007; 9 pages
doi:10.1115/IPC2016-64608
From:
  • 2016 11th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5026-6
  • Copyright © 2016 by ASME

abstract

Steel catenary risers (SCR) are widely used in offshore to transport hydrocarbon from the seabed to floating or fixed platforms. The fatigue life of SCR near the touchdown zone (TDZ) is one of the main design concerns because the risers are often subjected to cyclic loading (vertical penetration/uplift, lateral and axial displacements) from various sources of environmental loadings, such as sea waves and currents. Numerical modeling of the penetration and uplift behaviour of an SCR is a challenging task. Most of the models available in the literature for uplift resistance are empirical, which have been developed mainly from the results of physical experiments.

In this study, numerical simulation of vertical resistance is presented. Analysis is performed using ANSYS CFX software. Strain-softening and strain-rate dependent undrained shear strength behavior of soft clay sediment has been reported by many researchers. Unfortunately, these models were not available in CFX. Numerical simulations presented in this paper are performed implementing this behavior in CFX. Numerical results are compared with available empirical models. The present CFX modeling explains some mechanisms involved in trench formation and suction development during uplift. Factors affecting uplift resistance such as the size and shape of the trench are also discussed from a parametric study.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In