0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Experiment and Validation of Model for Offshore Buried Pipeline Thermal Analysis

[+] Author Affiliations
Suvra Chakraborty, Yuri Muzychka

Memorial University of Newfoundland, St. John’s, NL, Canada

Vandad Talimi, Rodney McAffee, Gerry Piercey

C-CORE, St. John’s, NL, Canada

Paper No. IPC2016-64257, pp. V002T08A002; 9 pages
doi:10.1115/IPC2016-64257
From:
  • 2016 11th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5026-6
  • Copyright © 2016 by ASME

abstract

Buried pipeline heat transfer modeling has become an important topic in the Oil and Gas industry. The viscosity of fluid i.e. crude oil travelling through the buried pipeline largely depends on the flow temperature and pressure. The aim of this paper is to give an overview of designing the experiment for heat loss from offshore buried pipelines and validation of the experimental model using analytical solution and CFD modeling.

Several benchmark tests have been performed to ensure the validity of the test using theoretical shape factor models which depend on the amount of heat flow, thermal conductivity and geometry of the surrounding medium. This theoretical model has limitations such as the assumption of uniform soil properties around the buried pipeline, isothermal outer surface of the buried pipeline and soil surface. This paper illustrates several steady state and transient experiments to simulate the mechanism of heat loss from an offshore buried pipeline along with the experimental procedures. This paper also shows the transient response for shutdown tests performed in dry sand medium with numerical runs as well. With the progress of the research, several investigations will be made using different burial depths and diameters of the buried pipeline with backfill materials and trenching for different soil conditions, affecting the actual behavior of the model.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In