Full Content is available to subscribers

Subscribe/Learn More  >

Pipeline Integrity Reliability Analysis Levels

[+] Author Affiliations
Sherif Hassanien, Len Leblanc, Javier Cuervo, Karmun Cheng

Enbridge Liquid Pipelines, Edmonton, AB, Canada

Paper No. IPC2016-64423, pp. V002T07A014; 7 pages
  • 2016 11th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5026-6
  • Copyright © 2016 by ASME


Reliability engineering science is a mature discipline that has been used extensively in industries such as aviation, nuclear energy, automobiles, and structures. The application of reliability principles (especially structural reliability) in oil and gas transmission pipelines is still an active area of development. The advent of high resolution in-line inspections tools (ILI) facilitates a formal application/utilization of reliability methods in pipeline integrity in order to safely manage deformation, metal loss, and crack threats. At the same time, the massive amount of ILI data, their associated uncertainties, and the availability/accuracy of failure prediction models present a challenge for operators to effectively implement the use of reliability analysis to check the safety of integrity programs within available timeframes. On the other hand, approximate reliability techniques may affect the analysis in terms of both accuracy and precision. In this paper, a Pipeline Integrity Reliability Analysis (PIRA) approach is presented where the sophistication of the reliability analysis is staged into three levels: PIRA levels I, II and III. The three PIRA levels correspond to different representations of integrity uncertainties, uses of available validated/calibrated data, uses of statistical models for operating pressure and resistance random variables, implementation of reliability methods, and consideration of failure modes. Moreover, PIRA levels allow for improved integration of reliability analysis with the existing timelines/stages of traditional integrity programs, such that integrity data are updated as the integrity program progresses. The proposed integrity reliability approach allows for the delivery of safety checks leveraging all types of information available at any given point in time. In addition, the approach provides a full understanding of the strengths and weaknesses of each PIRA level. Pipeline corrosion case studies are provided herein to illustrate how the PIRA Levels can be applied to integrity programs.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In