Full Content is available to subscribers

Subscribe/Learn More  >

Tensile and Compressive Strain Capacity of Pipelines With Corrosion Anomalies

[+] Author Affiliations
Honggang Zhou, Ming Liu

Center for Reliable Energy Systems, Dublin, OH

Brent Ayton, Jason Bergman

C-FER Technologies, Edmonton, AB, Canada

Steve Nanney

PHMSA, US DOT, Houston, TX

Paper No. IPC2016-64628, pp. V002T06A014; 12 pages
  • 2016 11th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5026-6
  • Copyright © 2016 by ASME


Strain-based design and assessment (SBDA) methods have been developed to address integrity issues for pipelines subjected to ground movement hazards. The current practice of strain capacity assessment focuses on the tensile rupture of girth welds and compressive buckling of pipes. The integrity management of in-service pipelines often involves assessing pipe segments with anomalies, such as mechanical damage and corrosion. The existing strain capacity models do not yet include the impact of those anomalies.

This paper covers a part of the outcome from a comprehensive research effort aimed at developing assessment procedures for pipelines containing corrosion anomalies and simultaneously subjected to large longitudinal strains. The resistance to tensile rupture and compressive buckling are the focus of the paper. Recommendations for the assessment of strain capacities were provided based on numerical analysis which identified key influencing parameters and controlling mechanisms. Full-scale experimental tests were also conducted to demonstrate the identified mechanisms and evaluate the assessment methods. Both numerical analysis and experimental test results demonstrate that: (1) corrosion anomalies can significantly reduce the tensile strain capacity (TSC) and compressive strain capacity (CSC) of pipes, (2) in addition to the depth and longitudinal length, the circumferential width of the corrosion anomalies has a significant impact on the TSC and CSC of pipes, (3) circumferential-groove corrosion anomalies reduce the tensile strain capacity more than general corrosion anomalies of the same depth and circumferential width, and (4) general corrosion anomalies reduce the compressive strain capacity more than the circumferential-groove anomalies of the same depth and circumferential width. The analysis and experimental test results shown in this paper can support development of SBDA procedures and guidelines of pipelines subjected to large longitudinal strains.

Copyright © 2016 by ASME
Topics: Corrosion , Pipelines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In