0

Full Content is available to subscribers

Subscribe/Learn More  >

Strain Capacity of Large Diameter Pipes: Full Scale Investigation With Influence of Girth Weld, Strip End Weld and Ageing Effects

[+] Author Affiliations
Susanne Höhler, Hossein Karbasian, Alexander Gering

Salzgitter Mannesmann Forschung GmbH, Duisburg, Germany

Christoph Kalwa

Europipe GmbH, Mulheim a. d. Ruhr, Germany

Brahim Ouaissa

Salzgitter Mannesmann Großrohr GmbH, Salzgitter, Germany

Paper No. IPC2016-64151, pp. V002T06A002; 10 pages
doi:10.1115/IPC2016-64151
From:
  • 2016 11th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5026-6
  • Copyright © 2016 by ASME

abstract

The strain capacity of pipes under combined loading is a significant research topic if the pipes are provided for Strain Based Design scenarios. Displacement controlled scenarios such as ground movements may significantly affect transmission pipelines by inducing large amounts of plastic axial strains, which need to be considered in the design process. For these combined loading cases with internal pressure combined with pronounced longitudinal strains from environmental conditions it is essential to evaluate critical deformations on the one hand and to conclude the required structural performance and material parameters, on the other hand. Also pipe laying procedures introduce axial strains in pipes and pipe strings, e.g. cold bending of pipes for onshore pipelines, or S-Laying of offshore pipelines in combination with external pressure. For these cases also the strain capacity of the pipes and pipe connections must be guaranteed. In any case, the structural behaviour needs to be checked via full-scale tests to confirm and validate engineering approaches and computational models.

This paper presents a full-scale test series of UOE pipe X70 (OD = 914 mm, WT = 14.1 mm) and Spiral welded pipe X70 (OD = 1016 mm, WT = 20 mm) subject to internal pressure and bending load. Full-scale 4-point-bending tests on pipe joints subject to internal pressure were performed. The test series included the influence of girth weld, strip end weld for spiral pipe, and ageing effects of thermal treatment from coating process. The local bending strains measured via strain gauges and via optical strain measurements in the bending zone are evaluated for the tensile and compressive zone and discussed with respect to existing buckling models.

The results of the full-scale test program confirmed that the weld connections of the pipe joints are capable of withstanding bending load. The effects of the girth weld and strip end weld during bending test are analyzed and discussed. The test results are extended by finite element simulations that widen the experimental parameter range.

Copyright © 2016 by ASME
Topics: Pipes , Strips

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In