Full Content is available to subscribers

Subscribe/Learn More  >

A Staged Approach for Managing Terrain and Geohazards on New Pipeline Projects

[+] Author Affiliations
Mark Leir, Katherine Johnston

BGC Engineering Inc., Vancouver, BC, Canada

Alex Baumgard

BGC Engineering Inc., Calgary, AB, Canada

Paper No. IPC2016-64175, pp. V002T02A022; 7 pages
  • 2016 11th International Pipeline Conference
  • Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5026-6
  • Copyright © 2016 by ASME


Pipeline route selection and design is an iterative process by which one or more potential pipeline corridors are systematically narrowed from the general path of about 10 km in width to a highly specified 30 m to 50 m wide corridor. The process usually spans several years, and is frequently becoming increasingly complicated, requiring a multi-disciplinary technical and managerial approach that considers the political and regulatory process, environmental impact and permitting, project and industry economics, access, constructability, land acquisition, and terrain. Specialist technical contributions to the pipeline routing process include pipeline hydraulics, pipeline and facility construction, terrain/geohazards, and environment/archaeology. Problematic terrain and geohazards are two of several issues that need to be managed through the feasibility and design of a new pipeline project. As the project advances through Front End Engineering and Design (FEED) from feasibility to final engineering design and as the corridor narrows from kilometers to tens of meters in width, the level of detail required in ongoing terrain and geohazard investigations should increase to optimize the design process and match the increased detail being provided by other specialists.

An idealized Four-Stage framework for managing geohazards and problematic terrain during pipeline routing and design is outlined in the paper. This framework has been founded on several international resources listed in the references and has, by necessity, been developed, tested, and refined by the authors over the last ten years on several large and small diameter pipeline projects in North and South America. Each of the 4 Stages is described and contains guidelines on project study scale, a target corridor width, the engineering design level, cost accuracy, and geohazard related engineering tasks and deliverables. This staged approach is provided as a road map to help guide all project participants including owners, project managers, engineers, scientists, and regulators to understand how geohazards and problematic terrain are managed through the pipeline routing and design process.

Copyright © 2016 by ASME
Topics: Pipelines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In