Full Content is available to subscribers

Subscribe/Learn More  >

Improved Pipeline Dent Integrity Management

[+] Author Affiliations
Sanjay Tiku, Amin Eshraghi, Vlad Semiga

BMT Fleet Technology Limited, Ottawa, ON, Canada

Luis Torres

Enbridge Liquids Pipelines, Edmonton, AB, Canada

Mark Piazza

Colonial Pipeline Company, Alpharetta, GA

Paper No. IPC2016-64530, pp. V001T03A088; 10 pages
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME


Pipeline dents can be developed from the pipe resting on rock, a third party machinery strike, rock strikes during backfilling, amongst other causes. The long-term integrity of a dented pipeline segment depends upon parameters including pipe geometry, indenter shape, dent depth, indenter support, secondary features, and pipeline operating pressure history at and following indentation. US DoT and other standards include dent repair and remediation criteria broadly based upon dent depth, dent location (top or bottom side), pressure cycling (liquid or gas), and dent interaction with secondary features (weld, corrosion, cracks). These criteria are simple and easily applied, however, they may not direct maintenance appropriately and be overly conservative or, in some cases, unconservative.

Previous IPC papers have discussed the full-scale dent fatigue testing and dent modelling efforts to support integrity management criteria development by collecting material and structural response during dent formation and pressure loading. The present paper will present the results of this extensive dent structural and fatigue life numerical simulation program using a validated finite element (FE) analysis process. The paper describes the numerical simulation technique, as well as, the development of the novel engineering tool for integrity management, eliminating the need for numerical simulation of individual dent features to assess the relative integrity threat they pose.

The development of the engineering tool presented in this paper considers the dent formation, re-rounding and through life response to pressure fluctuations to evaluate the fatigue life of dent features. The results of these analyses are used to develop fatigue life trends based on dent shape, restraint condition and operating pressure. These trends were used to develop models to predict dent relative severity and life based upon ILI inspection dent shape data for single peak dents. Dent shape has also been used to determine the restraint condition of a dent and its influence on the dent feature fatigue life. The tools were developed to address many of the uncertainties inherent in existing regulatory repair and remediation criteria. Current and future applications of the integrity assessment model are described along with recommendations for further development and testing to support pipeline integrity management, industry guidelines and standards.

The results of this research will be of use in improving integrity management decisions and support further development of industry guides and standards. As such the information presented in this paper will be of interest to pipeline operators, integrity management specialists, in-line inspection (ILI) organizations and regulators. The recommendations presented in this paper may be used to influence the direction of pipeline standards in their direction in the disposition of dent features.

Copyright © 2016 by ASME
Topics: Pipelines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In