0

Full Content is available to subscribers

Subscribe/Learn More  >

Full-Bore Pipeline Rupture as ‘Transient Fanno’ Flow

[+] Author Affiliations
Ajit Godbole, Guillaume Michal, Cheng Lu

University of Wollongong, Wollongong, Australia

Philip Venton

Venton and Associates, Bundanoon, Australia

Philip Colvin

Jemena, North Sydney, Australia

Paper No. IPC2016-64334, pp. V001T03A083; 7 pages
doi:10.1115/IPC2016-64334
From:
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME

abstract

Full-bore decompression of an initially highly pressurized pipe has been studied extensively in recent years. The main aim of this effort has been to estimate the speed of the decompression wave and its relationship to the speed of a travelling fracture in the pipe wall. It has been demonstrated that the speed of the decompression wave is influenced by the friction at the gas-solid interface, and also by the pipe size (diameter). The numerical value of the friction factor has been traditionally estimated using known relationships such as the Haaland formula. However, it has also been noticed that the friction factor calculated in this way has to be increased many-fold to achieve agreement between theory and experiment. To date, there is no physical justification for this increase.

The present paper proposes an explanation by modelling the full-bore decompression as a ‘transient Fanno’ flow. The model development is based on the observation that the flow at the exit plane always tends to approach a ‘choked’ condition (sonic velocity).

It is shown that a re-interpretation of the Fanno flow formula allows an estimation of the irreversibility, and therefore the friction factor, in the evolving flow. When averaged over space and time, the friction factor attains a value that need not be artificially adjusted. This value of the friction factor can be used in one-dimensional models of the decompression process. Also, the role of the ‘second coefficient of viscosity’ during the initial instants of the highly transient flow is examined.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In