0

Full Content is available to subscribers

Subscribe/Learn More  >

Continuous Depth Sizing of ILI Ultrasonic Crack Detection

[+] Author Affiliations
Abdullahi Atto, Marius Grigat, Jens Voss

ROSEN Technology and Research Center GmbH, Lingen, Germany

Paper No. IPC2016-64409, pp. V001T03A064; 9 pages
doi:10.1115/IPC2016-64409
From:
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME

abstract

Since the market launch of Ultrasonic crack detection tools, the conventional crack depth sizing is based on four depth classes or buckets. A more differentiated, continuous depth sizing is becoming increasingly relevant for the pipeline operators and especially for pipelines with large populations of planar anomalies (SCC colonies, lack-of-fusion in ERW seam-welds, etc.). The ILI industry is introducing a continuous crack depth sizing. Next to the better differentiation and the linearity of the depth reporting, the main advantage of the continuous depth sizing is the direct comparability to the results of the field verifications. The continuous depth sizing improves the ability to assess the performance validation of the depth sizing and thus, contributes to a general improvement of the crack depth sizing. This paper describes the development and implementation of a continuous crack depth sizing approach and shows its advantages in comparison to the conventional depth classes. A sizing model is introduced, making use of an empirically derived function, that relates the amplitude measurement to the defect depth. The continuous depth sizing applies to crack-like defects with depths ranging from 1mm to 4mm. The parameters of the model are derived from performance tests based on artificial flaws. In addition, the model is validated by means of field verification results. The depth sizing accuracy and confidence levels are obtained from the performance test data in accordance to API 1163 [1] and POF 2009 [2].

In addition, the paper discusses the extraction of the crack depth profiles from inspection data, making use of the newly developed continuous depth sizing model. In comparison to standard reporting of maximum depth and length, crack depth profiles deliver more accurate and more valuable input to the integrity assessment for pipeline operators. Examples of a direct comparison of these crack depth profiles to field verification data are included.

Copyright © 2016 by ASME
Topics: Crack detection

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In