Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Modeling and Quantification of Mechanical Damage Severity in Pipelines

[+] Author Affiliations
Xian-Kui Zhu

EWI, Columbus, OH

Brian N. Leis

B.N. Leis Consultant Inc., Columbus, OH

Paper No. IPC2016-64680, pp. V001T03A041; 9 pages
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME


Mechanical damage is one of the major threats to oil and gas transmission pipeline integrity, which has been the case now for decades. Although much work has been done in that context, due to the complexity of its effects mechanical damage severity remains difficult to quantify. Thus, work continues to better understand the failure mechanism and develop the means to screen damage severity.

The present paper adopts a validated elastic-plastic finite element analysis (FEA) model to simulate mechanical dents in pipelines and to quantify the effects of damage through a broad parametric study. This considers the need for three-dimensional FEA models and the effects of FEA element type, soil constraint condition, indenter type, pipeline grade and initial pipe pressure on dent response. The FEA model is also used to assess the minimum wall thickness for which a dent has the minimal effect on pipeline integrity. Finally, application of the proposed FEA model is illustrated by successfully predicting the failure behavior of a dent in a full-scale fatigue test involving a modern pipeline steel.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In