Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Pressure Fluctuations on Hydrogen Embrittlement in Pipeline Steels

[+] Author Affiliations
Xiao Xing, Mengshan Yu, Olayinka Tehinse, Weixing Chen, Hao Zhang

University of Alberta, Edmonton, AB, Canada

Paper No. IPC2016-64478, pp. V001T03A025; 10 pages
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME


Hydrogen embrittlement is one of the most severe steel degradation mechanisms. Using hydrogen enhanced decohesion (HEDE) and hydrogen enhanced local plasticity (HELP), we can predict if more hydrogen atoms will accumulate into the plastic zone, enhancing the hydrogen embrittlement and the crack growth rate. In the current study, a relationship has been proposed between operations of pipeline steels and hydrogen accumulation to quantify the effects of hydrogen embrittlement. The study find that hydrogen accumulation rate is proportional to stress intensity and inversely proportional to temperature; hence, higher stress intensity and lower temperature will enhance hydrogen accumulation and crack propagation. Hydrogen potential, diffusivity, hydrostatic stress near the crack tip, and the critical loading frequency have been considered in the new model to predict crack propagation rates in pipeline steels. The predicted values are compared with experimental results of X-65 steel in two near-neutral pH solutions to verify the model. This hydrogen diffusion model helps show former neglected hazard operations such as minor cycles, and offers an easier way to optimize operations that will prolong the life of pipeline steels.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In