0

Full Content is available to subscribers

Subscribe/Learn More  >

New Classification Approach for Dents With Metal Loss and Corrosion Along the Seam Weld

[+] Author Affiliations
J. Bruce Nestleroth

Kiefner, Columbus, OH

James Simek, Jed Ludlow

TD Williamson, Salt Lake City, UT

Paper No. IPC2016-64284, pp. V001T03A011; 10 pages
doi:10.1115/IPC2016-64284
From:
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME

abstract

The ability to characterize metal loss and gouging associated with dents and the identification of corrosion type near the longitudinal seam are two of the remaining obstacles with in-line inspection (ILI) integrity assessment of metal loss defects. The difficulty with denting is that secondary features of corrosion and gouging present very different safety and serviceability scenarios; corrosion in a dent is often not very severe while metal loss caused by gouging can be quite severe. Selective seam weld corrosion (SSWC) along older low frequency electric resistance welding (ERW) seams also presents two different integrity scenarios; the ILI tool must differentiate the more serious SSWC condition from the less severe conventional corrosion which just happens to be near a low frequency ERW seam. Both of these cases involve identification difficulties that require improved classification of the anomalies by ILI to enhance pipeline safety.

In this paper, two new classifiers are presented for magnetic flux leakage (MFL) tools since this rugged technology is commonly used by pipeline operators for integrity assessments. The new classifier that distinguishes dents with gouges from dents with corrosion or smooth dents uses a high and low magnetization level approach combined with a new method for analyzing the signals. In this classifier, detection of any gouge signal is paramount; the conservatism of the classifier ensures reliable identification of gouges can be achieved. In addition to the high and low field data, the classifier uses the number of distinct metal loss signatures at the dent, the estimated maximum metal loss depth, and the location of metal loss signatures relative to dent profile (e.g. Apex, Shoulder).

The new classifier that distinguishes SSWC from corrosion near the longitudinal weld uses two orientations of the magnetic field, the traditional axial field and a helical magnetic field. In this classifier, detection of any long narrow metal loss is paramount; the conservatism of the classifier ensures that high identification of SSWC can be achieved. The relative amplitude of the corrosion signal for the two magnetization directions is an important characteristic, along with length and width measures of the corrosion features.

These models were developed using ILI data from pipeline anomalies identified during actual inspections. Inspection measurements from excavations as well as pipe removed from service for lab analysis and pressure testing were used to confirm the results.

Copyright © 2016 by ASME
Topics: Metals , Corrosion

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In