0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of In-Line Inspection Performance and Interpretation of Field Measurements for Characterization of Complex Dents

[+] Author Affiliations
Luis A. Torres, Matthew J. Fowler, Jordan G. Stenerson

Enbridge, Liquids Pipelines, Edmonton, AB, Canada

Paper No. IPC2016-64136, pp. V001T03A007; 8 pages
doi:10.1115/IPC2016-64136
From:
  • 2016 11th International Pipeline Conference
  • Volume 1: Pipelines and Facilities Integrity
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5025-1
  • Copyright © 2016 by ASME

abstract

Integrity management of dents on pipelines is currently performed through the interpretation of In-Line Inspection (ILI) data; this includes Caliper, Magnetic Flux Leakage (MFL), and Ultrasonic Testing (UT) tools. Based on the available ILI data, dent features that are recognized as threats from a mechanical damage perspective are excavated and remediated. Federal codes and regulations provide rules and allow inference on what types of dent features may be a result of mechanical damage; nonetheless, there are challenges associated with identifying dents resulting from mechanical damage. One of the difficulties when managing the mechanical damage threat is the lack of information on how MFL and UT ILI tool performance is affected by dented areas in the pipe. ILI vendors do not offer any technical specifications for characterizing and sizing metal loss features in dents. It is generally expected that metal loss tool performance will be affected in dented areas of the pipe, but it is not known to what degree. It is likely that degradation will vary based on feature shape, sensor design, and sensor placement. Because metal loss tool performance is unknown within the limits of the dented pipe, other methods for recognizing mechanical damage have been incorporated into the management strategies of mechanical damage. Some of these methods include strain based assessments and characterization of shape complexity. In order to build a more effective integrity management program for mechanical damage, it is of critical importance to understand how tool technology performance is affected by dented areas in the pipe and what steps can be taken to use ILI information more effectively. In this paper, the effectiveness of MFL and UT wall measurement tools in characterizing and sizing metal loss features within dents is studied by evaluating against field results from non-destructive examinations of mechanical damage indications. In addition, the effectiveness of using shape complexity indicators to identify mechanical damage is evaluated, introducing concepts such as dents in close proximity and multi-apex dents. Finally, the effectiveness of ILI tools in predicting dent association with girth welds is also explored by comparing ILI and field results.

Copyright © 2016 by ASME
Topics: Inspection

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In