Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Flow Boiling Heat Transfer Using Radial Microchannels

[+] Author Affiliations
Alyssa Recinella, Ankit Kalani, Satish G. Kandlikar

Rochester Institute of Technology, Rochester, NY

Paper No. ICNMM2016-7975, pp. V001T05A002; 7 pages
  • ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
  • ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5034-3
  • Copyright © 2016 by ASME


Flow boiling has the ability to remove high heat fluxes while maintaining a low wall superheat. Various researchers have developed enhanced microchannel geometries to improve the heat transfer performance of the system. Recently, a number of new studies have used the increasing flow cross-sectional area concept to overcome flow instabilities and record high CHF. In this work, a new geometry is experimentally investigated utilizing a radial cross-section, which provides the increasing fluid flow cross-sectional area in the flow direction. The flow boiling performance is studied using radial microchannels and water as the working fluid. Four different flow rates ranging from 120–400 mL/min are studied for this new geometry. Heat transfer performance (boiling curve and heat transfer coefficient) and pressure drop characteristics are discussed for all flow rates. Furthermore, the work is supported by high speed visualization of the bubble dynamics. The boiling performance obtained is compared to the existing data in the literature.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In